

Nijmegen University Centre for Infectious Diseases

Contact

David Burger, PharmD, PhD

Dept. of Clinical Pharmacy

Phone +31, 24, 3616405

Fax +31, 24, 3540331

533 UMC St Radboud

6500 HB Niimegen

The Netherlands

P.O. Box 9101

Poster 934 Abstract S-34

11th Conference of Retroviruses and Opportunistic Infections. Feb 8-11, 2004

Introduction

- . Simplification of antiretroviral therapy by reducing dosing frequency can enhance compliance to medication in both HIV-1 infected adults and children.
- · Very little is known on once daily (q24h) use of nucleoside analogues in HIV-1 infected children

Objectives

- 1. To compare the plasma pharmacokinetics (PK) of lamiyudine (3TC) 8 mg/kg g24h with 4 mg/kg q12h and of abacavir (ABC) 16 mg/kg q24h with 8 mg/kg q12h.
- 2. To evaluate age-related differences in the PK of these agents.

Methods

- Study design
- . Open label, single sequence, two-period cross-over study
- Children were enrolled 1:1 into age strata of >2-6 and >6-<13 years old
- Intensive plasma PK sampling was performed at steady-state during use of 3TC and/or ARC a12h and 4 weeks after switch to a24h
- Plasma concentrations of 3TC and ABC were determined by a validated method of HPLC
- Non-compartmental PKs were applied. Geometric mean ratios (GMR) with 90% confidence. intervals (CI) of PK parameters were calculated to compare d24h and d12h regimens
- HIV-RNA load measurements were performed at baseline and routinely during the follow.
- Reported are PK data and a summary of safety and virologic efficacy data up to week 12.

Inclusion criteria

- age >2-13 years and confirmed HIV-1 infection
- using combination treatment containing 3TC 4 mg/kg q12h and/or ABC 8 mg/kg q12h; willing to switch 3TC and/or ABC to g24h use
- · clinically stable:
- → HIV-1RNA load suppressed, or non-suppressed but relatively low (400-20,000 copies/mL)
- → CD4+ cell count stable or rising prior to study entry
- children and/or parents able to give informed consent

Fixely \$1.0 Median plasma concentrations of 3TC in HIV-1 infected children (N=19) who used 3TC 4 mg/kg q12h and switched to 8 mg/kg q24h.

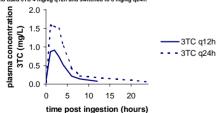
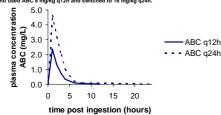



Figure 1R: median plasma concentrations of ARC in HIV-1 infected children (N=14) who used ABC 8 mg/kg q12h and switched to 16 mg/kg q24h.

Table 1: PK parameters of 3TC 4 mg/kg g12h and 8 mg/kg g24h and within-patient comparison of g24h vs. g12h

Pharmacokinetic parameter 3TC	4 mg/kg q12h	8 mg/kg q24h	Within-patient
	(GM (90% CI))	(GM (90% CI))	comparison
	(N=19)	(N=19)	q24h vs. q12h
			(GMR (90% CI))
			(N=19)
AUC ₀₋₂₄ (mg/L*h)	8.88 (7.67-10.28)	9.80 (8.64-11.12)	1.12 (1.03-1.21)
$C_{max}(mg/L)$	1.11 (0.96-1.29)	2.09 (1.80-2.42)	1.90 (1.67-2.16)
C _{min} (mg/L)	0.067 (<0.050-0.153)	0.050 (<0.050-0.076)	N.A.*
(median (range)			
CI/F*kg (L/h*kg)	0.90 (0.78-1.04)	0.80 (0.70-0.92)	0.89 (0.82-0.96)
not available			

Table 2: PK of 3TC in children >2 - 6 vs. >6-<13 years old (GM (90% CI))

Pharmacokinetic 8 mg/kg g12h

(GM (90% CI))

narameter ABC

	31C 4 mg/kg q12n		STC 6 mg/kg q24m			
Pharmacokinetic	Children ≥2 - 6 years	Children >6 - <13	P value	Children ≥2 - 6 years	Children >6 - <13 years	P value
parameter	old (N=10)	years old (N=9)		old(N=10)	(N=9)	
AUC ₀₋₂₄ (mg/L*h)	7.60 (6.12-9.45)	10.55 (8.82-12.63)	0.050	8.80 (7.43-10.43)	11.04 (9.06-13.45)	0.124
C _{mix} (mg/L)	0.94 (0.78-1.13)	1.34 (1.08-1.67)	0.033"	1.72 (1.48-1.99)	2.59 (2.04-3.28)	0.013
C _{min} (mg/L) (median	0.068 (<0.050-0.15)	0.067 (<0.050-0.11)	N.A.*	0.050 (<0.050-0.076)	0.061 (<0.050-0.074)	N.A.*
(range))						
CVF*kg (L/h*kg)	1.09 (0.89-1.34)	0.73 (0.63-0.85)	0.130	0.92 (0.78-1.08)	0.69 (0.55-0.87)	0.069
*: not ovolloblo				1		

Table 3: PK parameters of ABC 8 mg/kg g12h and 16 mg/kg g24h and within-patient comparison of Within-patient

16 ma/ka a24h

(GM (90% CI))

comparison ABC

	(N=14)	(N=14)	q24h vs. q12h	
			(GMR (90% CI))	
			(N=14)	
AUC ₀₋₂₄ (mg/L*h)	9.91 (8.26-11.89)	13.37 (11.80-15.16)	1.35 (1.19-1.54)	
C _{max} (mg/L)	2.14 (1.79-2.56)	4.80 (4.04-5.71)	2.25 (1.83-2.77)	
C _{min} (mg/L)	0.025 (<0.015-0.070)	<0.015 (<0.015-0.046)	N.A.*	
(median (range))				
Cl/F*kg (L/h*kg)	1.58 (1.30-1.93)	1.16 (1.01-1.34)	0.73 (0.64-0.84)	
*: not available				

Results

Baseline

- 24 HIV-1 infected children using antiretroviral combination therapy were enrolled
- median age (range) 5.6 (2.1-12.8) years: median body weight (range) (22.5 (12.5-60.5) kg 20/24 children (10 girls/10 boys) had complete PK data of 3TC (N=19) and/or ABC (N=14)
- One child used amoxicillin/clavulanic acid on the day of PK sampling. Data of this child were not excluded since no interference of the drug with the PK of 3TC nor ABC is expected
- . At baseline, in 16/20 (80%) children, plasma HIV-1 RNA load was <100 copies/mL.

PK of 3TC (Tables 1 and 2)

- The GMR of AUC₀₋₂₄ q24h vs. q12h significantly exceeded 1.0, suggesting non-inferiority in terms of PK of the q24h regiment. burger@akf.umcn.nl
- For C_{max} q24h vs. q12h, GMR approximated 2, suggesting linear pharmacokinetics of 3TC.
- . CI/F*kg was significantly lower for q24h than q12h 3TC.
- No significant differences were found with respect to GMRs between children >2- 6 years and children >6-<13 years old: GMRs

- 1.17 and 1.06 for AUC_{0.26} 1.84 vs. 1.96 for C_{max} and 0.85 vs. 0.93 for Cl/F*kg, respectively (p values all >0.30, data not shown).
- Charles ABC (Cables A and 4) we lower plasma levels of 3TC than children >6-<13 years old; this difference was most
- evidibine GMR of AUC₀₋₂₄ of the q24h vs. q12h regimen of ABC significantly exceeded 1.0, suggesting non-inferiority in terms of PK of the q24h with regard to q12h regimen
- Four(C____(可由地)z)vs. q12h regimen, GMR exceeded 2, possibly reflecting more than dose-proportional pharmacokinetics of ABC.
- . CI/F*kg was significantly lower for q24h versus q12h ABC.
- No difference was found between GMRs in children >2- 6 years and children >6-<13 years old: GMRs were 1.46 and 1.17 for AUC₀₋₂₄, 2.61 versus 1.72 for C_{max} and 0.67 versus 0.85 for Cl/F*kg, respectively (p values all >0.08, data not shown).
- No significant differences in AUC_{0.24}, C_{max} and Cl/F*kg of ABC were observed between children >2-6 years old and children >6-<13 years old (Table 4).
- However, in the younger age group, all 9 children using ABC q24h had a C_{min} < 0.015 mg/L, vs. 2 out of the 5 older children (p=0.03).
- . This finding seems of little clinical relevance due to the long intracellular half-life of ABC's active moiety. For ABC q12h, no such difference seemed present: 1/9 younger

Safety /5 older children had a C_{min} < 0.015 mg/L (p=0.60).

- At week 12 after changing to the q24h regimen, no child had discontinued treatment due to adverse events (AEs).
- . One case of grade 3 neutropaenia occurred at week 12, which resolved at week 24. This AE was considered possibly drug related
- . In none of the patients, changes in clinical chemistry and haematology laboratory measurements were observed after changing 3TC and/or ABC from q12h to q24h.

Virologic efficacy (week 12)

- 12 weeks after changing to the g24h regimen. HIV-1 RNA load was <100 copies/ml. in 17/20 children (85%), while in 3/20 children. HIV-1 RNA loads were 160, 1600 and 3900 copies/mL, respectively
- Of these 3 children, 2 had already an HIV-1 RNA load >100 copies/mL at baseline (in the 2 other subjects with an HIV-1 RNA load >100 copies/mL at baseline, viral load had become undetectable at the g24h regimen).
- In the 3rd child with HIV-1 RNA load > 100 copies/mL, viral load increase was caused by a major compliance problem.

	ABC 8 mg/kg q12h			ABC 16 mg/kg q24h		
Pharmacokine tic	Children ≥2 - 6 years	Children >6 - <13	P-value	Children ≥2 - 6 years old	Children >6 - <13	P-value
parameter	old (N=9)	years old (N=5)		(N=9)	years old (N=5)	
AUC ₀₋₂₄ (mg/L*h)	9.27 (7.06-12.18)	11.17 (8.76-14.24)	0.408	13.55 (11.19-16.42)	13.06 (10.91-15.63)	0.812
C _{max} (mg/L)	1.94 (1.50-2.51)	2.54 (2.00-3.22)	0.215	5.07 (3.92-6.56)	4.36 (3.39-5.60)	0.478
C _{min} (mg/L)	0.027 (<0.015-0.040)	0.022 (<0.015-0.070)	N.A.*	<0.015 (<0.015-<0.015)	0.016 (<0.015-0.046)	N.A.*
(median (range))						
CI/F*kg (L/h*kg)	1.80 (1.37-2.36)	1.26 (0.96-1.64)	0.130	1.21 (1.00-1.47)	1.08 (0.81-1.44)	0.509
*: not available				ı		

Conclusions

- These PK data, in addition to good 12-week efficacy, and safety suggest feasibility of g24h use of 3TC and ABC in HIV-1 infected children >2 - <13 years old with suppressed viral load.
- Therapeutic equivalence of α24h regimens of 3TC and ABC should be further evaluated in a comparative clinical trial.
- · The tendency for lower plasma levels of 3TC in younger children poses the question, if higher doses of 3TC should be applied in younger children
- Data on intracellular PK may contribute to the evaluation of the clinical relevance of this finding.