MTV09-04

Prevalence of antibiotic-resistant bacterial colonization in neonatal intensive care in Europe

Matilda Berkell¹, Liesbet Van Heirstraeten¹, Aislinn Cook², Julia Bielicki^{3,2}, Surbhi Malhotra-Kumar¹

¹Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium, ²Centre for Neonatal and Paediatric Infection, St. George's University of London, London, United Kingdom, ³Paediatric Research Centre, University of Basel Children's Hospital, Basel, Switzerland

Introduction

Infants colonized with antibiotic-resistant bacteria (ARB) are at **high-risk** of developing **severe bacterial infections**, that can ultimately lead to sepsis, particularly when born at <32 weeks gestation (high-risk). However, overall **prevalence and burden** of specific antibiotic resistance genes (ARGs) in a high-income setting is largely **unknown**.

Methodology

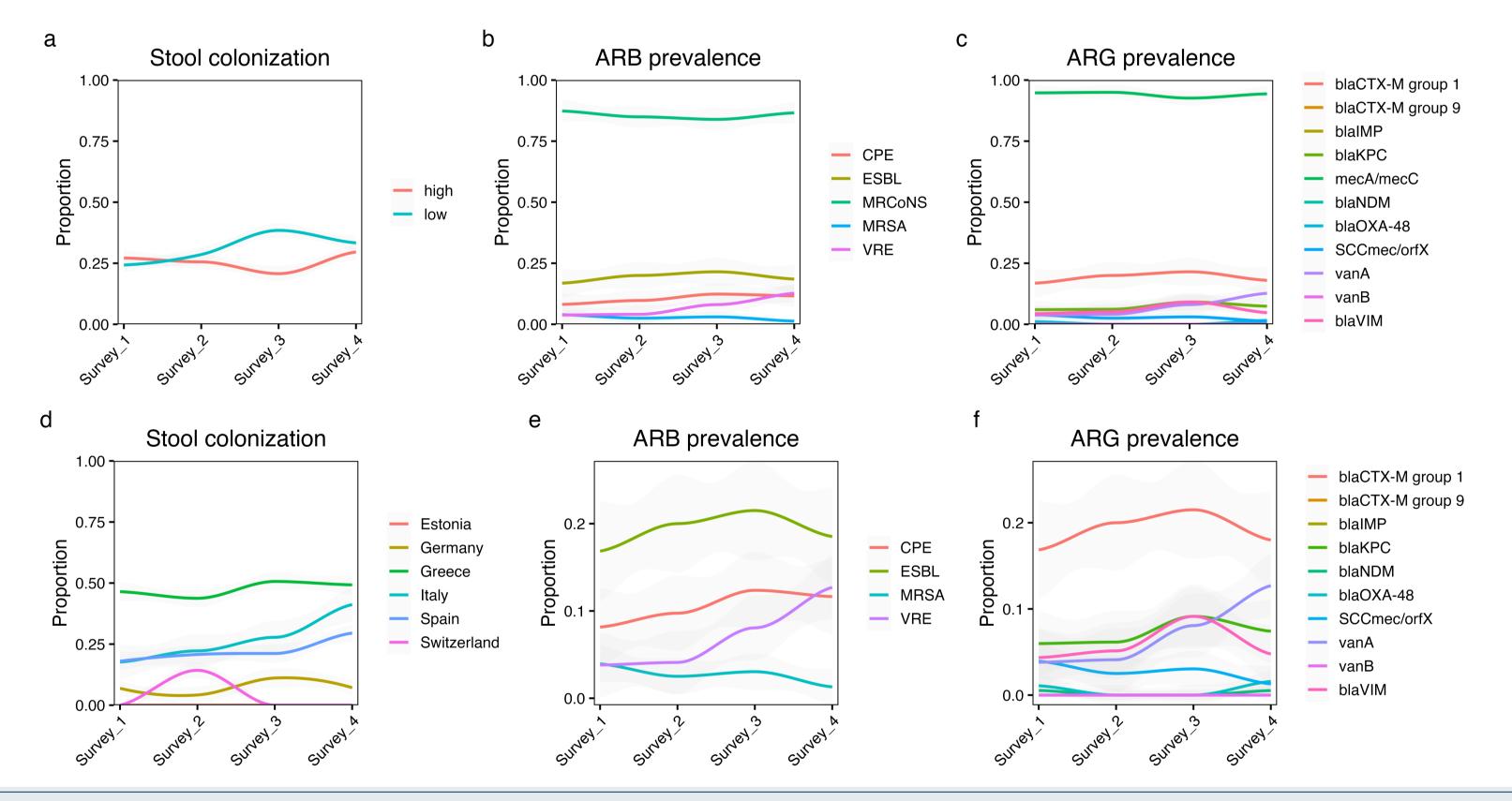
In the pan-European NeoIPC project, skin swabs (N=929) and stool samples

Table 1. Overview of ARBs/ARGs detected, assays used, and sample matrix utilized for analysis.

(*N*=754) were collected during **four point-prevalence surveys** (PPSs) interspaced with 4-, 7-, or 14-day intervals from all infants (<1 year, *N*=468) present in 14 NICUs across six European countries. DNA was extracted (NucliSENS easyMAG, bioMérieux) followed by **RT-qPCR detection** of **carbapenemases** (CBPs), **extended-spectrum-beta-lactamases** (ESBLs), and **vancomycin-resistant enterococci** (VREs) in stools, as well as **methicillin-resistant** *Staphylococcus aureus* (MRSA) in skin swabs (Table 1). Collected anonymized data were analyzed per sample per PPS.

Abbreviations

ARB: antibiotic-resistant bacteria
ARG: antibiotic resistance gene
PPS: point-prevalence survey
CBP: carbapenemase
ESBL: extended-spectrum beta-lactamase


VRE: vancomycin-resistant enterococci MRSA: methicillin-resistant *Staphylococcus aureus* MRCoNS: methicillin-resistant coagulasenegative staphylococci

Sample matrix	ARB Type	Gene target	Assay		
Stool	СВР	bla _{KPC} bla _{NDM} bla _{VIM} bla _{IMP} bla _{OXA-48}	Carbaplex-IVD PCR (Bruker)		
	ESBL	bla _{CTX-M} group1 bla _{CTX-M} group9	Ba04646149_s1, Ba04646127_s1 (ThermoFisher)		
	VRE	vanA vanB	VRE (Geneproof)		
Skin swab	MRSA	mecA/mecC SCCmec/orfX	Diarolla MARSA Saac (Carbian)		
	MRCoNS	mecA/mecC	 Diarella MRSA-SeqC (Gerbion) 		

Results

Table 2. Antibiotic-resistant bacterial (ARB) colonization patterns across four point-prevalence surveys (PPSs). ARB/ARG colonization rates were determined per PPS by performing PCRs detecting ESBLs, CBPs, and VREs (stool screening), as well as MRSA and MRCoNS (skin swab screening).

Variable	Total samples	Total	Survey-1	Survey-2	Survey-3	Survey-4
Stool colonization	754	217 (29%)	47 (26%)	53 (27%)	57 (31%)	60 (32%)

Stool colonization	754	217 (29%)	47 (26%)	53 (27%)	57 (31%)	60 (32%)
Number of positive gene targets ¹	754					
1		151 (20%)	36 (20%)	40 (21%)	35 (19%)	40 (21%)
2		48 (6.4%)	9 (4.9%)	10 (5.1%)	14 (7.5%)	15 (7.9%)
3		15 (2.0%)	2 (1.1%)	3 (1.5%)	6 (3.2%)	4 (2.1%)
4		3 (0.4%)	0 (0%)	0 (0%)	2 (1.1%)	1 (0.5%)
VRE detected	754	54 (7.2%)	7 (3.8%)	8 (4.1%)	15 (8.1%)	24 (13%)
vanA		54 (7.2%)	7 (3.8%)	8 (4.1%)	15 (8.1%)	24 (13%)
vanB		0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
CBP detected	754	79 (10%)	15 (8.2%)	19 (9.7%)	23 (12%)	22 (12%)
bla крс		54 (7.2%)	11 (6.0%)	12 (6.2%)	17 (9.1%)	14 (7.4%)
blandм		2 (0.3%)	1 (0.5%)	0 (0%)	0 (0%)	1 (0.5%)
Ыаvıм		44 (5.8%)	8 (4.3%)	10 (5.1%)	17 (9.1%)	9 (4.8%)
blaімр		0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
bla 0ХА-48		5 (0.7%)	2 (1.1%)	0 (0%)	0 (0%)	3 (1.6%)
ESBL detected	754	145 (19%)	31 (17%)	39 (20%)	40 (22%)	35 (19%)
<i>bla</i> стх-м group1		144 (19%)	31 (17%)	39 (20%)	40 (22%)	34 (18%)
blaстх-м group9		1 (0.1%)	0 (0%)	0 (0%)	0 (0%)	1 (0.5%)
MRSA detected ²	929	25 (2.7%)	9 (3.9%)	6 (2.5%)	7 (3.0%)	3 (1.3%)
MRCoNS detected ³	929	821 (88%)	209 (91%)	209 (87%)	200 (87%)	203 (88%)
Risk group ¹	754		· · ·			
High risk		86 (40%)	22 (47%)	23 (43%)	17 (30%)	24 (40%)
Non-high risk		131 (60%)	25 (53%)	30 (57%)	40 (70%)	36 (60%)
Country ¹	754	· · ·				
Estonia (N=20)		0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
ES1 (N=20)		0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
Germany		7 (7.1%)	2 (6.9%)	1 (4.2%)	2 (11.1%)	2 (7.1%)
GE1 (<i>N=</i> 99)		7 (7.1%)	2 (6.9%)	1 (4.2%)	2 (11.1%)	2 (7.1%)
Greece (N=295)		140 (48%)	33 (46.5%)	35 (43.8%)	39 (50.6%)	33 (49.3%
GR1 (<i>N</i> =27)		14 (51.9%)	3 (60 %)	2 (25%)	7 (88%)	2 (33%)
GR2 (<i>N</i> =69)		54 (78.3%)	11 (65%)	15 (79%)	17 (94%)	11 (73%)
GR3 (<i>N</i> =82)		51 (62.2%)	15 (71%)	13 (59%)	10 (48%)	13 (72%)
GR4 (<i>N</i> =83)		11 (13.3%)	3 (14%)	3 (14%)	2 (9.5%)	3 (16%)
GR5 (<i>N</i> =34)		10 (29.4%)	1 (14%)	2 (22%)	3 (33%)	4 (44%)
Italy (N=70)		19 (27.1%)	3 (17.6%)	4 (22.2%)	5 (27.8%)	7 (41.2%)
IT1 (<i>N</i> =43)		7 (16.3%)	2 (17%)	2 (22%)	0 (0%)	3 (27%)
IT2 (<i>N</i> =27)		12 (44.4%)	1 (20%)	2 (22%)	5 (71%)	4 (67%)
Spain (N=216)		49 (22.7%)	9 (18.0%)	11 (20.8%)	11 (21.2%)	18 (29.5%
SP1 (N=54)		16 (29.6%)	4 (31%)	3 (25%)	4 (36%)	5 (28%)
SP2 (<i>N=</i> 66)		7 (10.6%)	2 (14%)	0 (0%)	0 (0.0%)	5 (29%)
SP3 (<i>N</i> =96)		26 (27.1%)	3 (13%)	8 (36%)	7 (28%)	8 (31%)
Switzerland (N=54)		2 (3.7%)	0 (0%)	2 (14.3%)	0 (0%)	0 (0%)
SW1 (<i>N</i> =44)		2 (4.5%)	0 (0%)	2 (15%)	0 (0%)	0 (0%)
SW2 (<i>N</i> =10)		0 (0%)	0 (0%)	0 (0 %)	0 (0%)	0 (0%)

¹Calculated based on stool ARG colonization ²MRSA-positive skin swab samples tested positive for both *mecA/mecC* and *SCCmec/orfX* ³MRCoNS-positive skin swab samples tested positive only for *mecA/mecC* **Figure 1.** ARB colonization patterns over time in infants admitted to 14 European NICUs. Panels (a) and (d) display proportion of ARG-positive (CPE, ESBL, or VRE) stool samples defined by infant risk status and country of collection, respectively. Panels (b) and (e) display proportion of ARG/ARB-positive samples with or without MRCoNS, respectively. Finally, panels (c) and (f) display proportion of samples where individual ARGs were detected with and without *mecA/mecC*, respectively.

Overall, **26%** (217/754) stool samples were **ARG-positive** (ESBL, CBP, or VRE) across four PPSs, and in 8.8% (66/754) \geq 2 ARGs were detected (**Table 2**). **ESBLs** (19%, *bla_{CTX-M}* group1) were **most prevalent**, followed by **CBPs** (10%; mainly *bla_{KPC}* and *bla_{VIM}*), and VREs (7.2%, *vanA*). In contrast, **MRSA** skin colonization was **rare** (2.7%). While not specifically screened for, methicillin-resistant coagulase-negative staphylococci (**MRCoNS**) were detected by the MRSA assay in **majority** of the skin swabs (88%, 821/929).

40% of high-risk infants were colonized, compared to 60% of non-high-risk infants (Pearson's χ^2 , p=0.3), and **high-risk infants** were more frequently **ESBL-colonized** (21% vs. 16%, p=0.086). Gut ARG colonization varied by country and site (p<0.001), ranging from 0.0%-94% for individual sites, and was must common in Grasse (**Figure 1**).

individual sites, and was most common in Greece (Figure 1).

Colonization rate stability over time was found to be ARG/ARB-dependent; only VRE colonization increased from 3.8%-13% during the study period (*p*=0.002), while the CBP, MRSA, ESBL, and MRCoNS positivity remained stable over time (*p*>0.05).

Conclusion

- We observed remarkable variation in ARG prevalence across countries and NICU sites.
- Stability of colonization rate/PPS was found to vary for different ARGs.
- Although non-significant, gut colonization with ESBLs, specifically *bla_{CTX-M}* group 1, was more frequent in high-risk infants.

Learn more about the NeoIPC project here!

NeoIPC

University of Antwerp Laboratory of Medical Microbiology Vaccine and Infectious Disease Institute

Contact:Prof. Surbhi Malhotra-Kumar: surbhi.malhotra@uantwerpen.beProf. Julia Bielicki: juliaanna.bielicki@ukbb.chDr. Matilda Berkell: matilda.berkell@uantwerpen.be

This work was supported by the NeoIPC project, which has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 965328.