Clinical Trials MRC

Smarter studies Global impact Better health

Siobhan Crichton¹, Intira Jeannie Collins¹, Anna Turkova¹, Luminita Ene², Luisa Galli³, Magdalena Marczynska⁴, Marisa Navarro⁵, Lars Naver⁶, Antoni Noguera-Julian⁷, Yulia Plotnikova⁸, Henriette Scherpbier⁹, Alla Volokha¹⁰, Evgeny Voronin¹¹, Ali Judd¹ on behalf of the European Pregnancy and Paediatric Infections Cohort Collaboration (EPPICC)

¹MRC Clinical Trials Unit at UCL, University College London, UK. ²Victor Babes Hospital, Italy. ⁴Medical University of Warsaw, Hospital, Italy. ⁴Medical University of Warsaw, Hospital, Bucharest, Romania. ³Department of Health Sciences, University of Marañón", of Warsaw, Hospital of Infectious Diseases, Warsaw, Poland. ⁵Hospital General University of Marañón", and of Infectious Diseases, Warsaw, Poland. ⁵Hospital General University of Warsaw, Hospital of Infectious Diseases, Warsaw, Poland. ⁵Hospital General University of Warsaw, Hospital of Infectious Diseases, Warsaw, Poland. ⁵Hospital General University of Warsaw, Hospital of Infectious Diseases, Warsaw, Poland. ⁵Hospital General University of Warsaw, Hospital of Infectious Diseases, Warsaw, Poland. ⁵Hospital General University of Warsaw, Hospital of Infectious Diseases, Warsaw, Poland. ⁵Hospital of Infectious Diseases, Warsaw, Poland. ⁵Hospital General University of Warsaw, Hospital of Infectious Diseases, Warsaw, Poland. ⁵Hospital of Infectious Disease, Warsaw, Poland. Complutense University, Madrid, Spain. ⁶Karolinska Institutet and University Hospital, Sweden. ⁷Unitat d'Infectologia, Servei de Pediatria, Hospital Sant Joan de Deu, Universitat de Barcelona, Barcelona, Spain. ⁸Irkutsk Regional Centre for Prevention and Control of AIDS and Infectious Diseases, Irkutsk, Russian Federation. ⁹Emma's Children Hospital, Amsterdan University Medical Centers, Netherlands. ¹⁰Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine. ¹¹Republican Hospital of Infectious Diseases, St Petersburg, Russia

Background

The World Health Organization (WHO) recommends abacavir as the preferred/alternative backbone for 1st line regimens in children with HIV from age 28 days.

There are limited data available on safety and tolerability of abacavir in young infants aged <3 months.

Inclusion criteria

All children in the European Pregnancy and Paediatric Infections Cohort Collaboration (EPPICC) who initiated abacavir aged <3 months between 2000-2016 were included.

Methods

describe infant and regimen We characteristics at the start of abacavir combinations and (including drug dosing) and outcomes up to 12 months after first use of abacavir.

Outcomes include:

- drug discontinuations (defined as interruption of abacavir for >30 days),
- clinical adverse events (AE, reported from start of abacavir, and up to 30 after discontinuation days Of abacavir) and
- viral load at 6 and 12 (± 3) months after start of abacavir.

years.

Year of Female Age at I Age at s Age <28 Post-exp

*63 infants received post-exposure prophylaxis (PEP) prior to abacavir-based treatment. 4 of the 63 PEP regimens included abacavir, with the abacavir continuing following HIV diagnosis)

Acknowledgements

(E Seiter for HIV infection in children, Italian Register for HIV infection in children, Italy (L Galli, M de Martino); Latvian Cohort, Poland (M Marczynska); "Victor Babes" Hospital Cohort, Romania (L Ene); The Republican Cohort, Romania (L Ene); E Hospital of Infectious Diseases, St Petersburg, Russia (E Voronin, L Okhonskaia); The City HIV Centre, St Petersburg, Russia (A Samarina); Irkutsk AIDS Centre (Y Plotnikova, V Rozenberg); CoRISPES, rest of Spain (A Noguera Julian); CoRISPES, rest of Spain (A Noguera Julian); CoRISPES, rest of Spain (A Noguera Julian); Irkutsk AIDS Centre (Y Plotnikova, V Rozenberg); CoRISPES, rest of Spain (A Noguera Julian); CoRISPES, rest of Spain (A Noguera Julian); Irkutsk AIDS Centre (Y Plotnikova, V Rozenberg); CoRISPE-cat, Catalonia, Spain (A Noguera Julian); CoRISPES, rest of Spain (A Noguera Julian); Irkutsk AIDS Centre (Y Plotnikova, V Rozenberg); CoRISPE-cat, Catalonia, Spain (A Noguera Julian); Irkutsk AIDS Centre (Y Plotnikova, V Rozenberg); CoRISPE-cat, Catalonia, Spain (A Noguera Julian); Irkutsk AIDS Centre (Y Plotnikova, V Rozenberg); CoRISPE-cat, Catalonia, Spain (A Noguera Julian); Irkutsk AIDS Centre (Y Plotnikova, V Rozenberg); CoRISPE-cat, Catalonia, Spain (A Noguera Julian); Irkutsk AIDS Centre (Y Plotnikova, V Rozenberg); CoRISPE-cat, Catalonia, Spain (A Noguera Julian); Irkutsk AIDS Centre (Y Plotnikova, V Rozenberg); Irkutsk AIDS Centre (C Thorne); Collaborative HIV Paediatric Study, UK and Ireland (C Thorne); Collaborative HIV Paediatric Study

Abacavir Dosing, Effectiveness and Safety in Young Infants Living with HIV in Europe

• Of 498 children in EPPICC who initiated antiretroviral therapy (ART) aged <3 months, 139 (28%) received an abacavir containing regimen and were followed for median 4.6 [IQR 1.5,9.7]

 Characteristics of these 139 infants are shown in Table 1 and weight bands and regimen characteristics in Table 2.

Table 1: Characteristics of infants initiating abacavir age <3 months

	n(%) or median [IQR]
birth	2010 [2006, 2012]
sex	84 (60%)
HV diagnosis (days)	39 [11,62]
start of abacavir (days)	62 [35,78]
B days at start of abacavir	20 (14%)
oosure prophylaxis received*	63 (45%)

Adverse events and drug discontinuations

By 12 months after start of treatment 3.6% (n=4) had discontinued abacavir due to an ART safety concern and 11.8% (n=15) discontinued for any reason (Figure 2).

During the first 12 months, 8 infants had one AE each (Table 3). Four of these AEs led to discontinuation of abacavir, all occurred within 7 days of starting abacavir (1 in 2003, 1 in 2007 and 2 in 2011). The AEs were:

1 severe metabolic acidosis (initially thought to be abacavir reaction, later confirmed rotavirus gastroenteritis; HLA-B 5701 negative);

1 diarrhoea and vomiting (considered unlikely related to abacavir; HLA-B 5701 negative);

1 possible HLAB5701 positivity (unconfirmed);

1 hypersensitivity reaction (HLAB5701 status unknown).

The other 4 AEs reported (which did not lead to abacavir

discontinuation) were 3 pneumonia and 1 anaemia (possibly related to zidovudine):

There were no deaths reported during follow-up of the 139 children who initiated abacavir in infancy.

Characteristics of infants initiating abacavir

2

Unknown

s.crichton@ucl.ac.uk

0844

Table 2: Weight bands and dosing at start of abacavir	
	n(%)
eight at start of abacavir (n=71)	
kg	8(11%)
o <6kg	60(85%)
o <10kg	3(4%)
tial abacavir dose* (n=44)	
mg/kg BD	3(7%)
Smg/kg BD	6(14%)
ng/kg BD	30(68%)
mg/kg BD	5(11%)
itial regimen	
BC+3TC+LPV/r	54(39%)
BC+3TC+AZT+NVP	45(32%)
SC+3TC +NVP	19(14%)
ther	21(15%)

Abbreviations: ABC – abacavir, 3TC – lamivudine, LPV/r – lopinavir/ritonavir, AZT – zidovudine, NVP – nevirapine *The EMA recommend a dose of 8mg/kg BD from age 3 months but due to limited data do not provide dosing recommendations for those <3 months old. Excludes agacavir containing PEP regimend

Viral suppression at 6 and 12 months

64/92(70%) and 59/77(77%) on abacavir containing regimens had viral load <400 copies/mL at 6 and 12

> Viral load at 6 and 12 months of treatment did not differ significantly by regimen type (p=0.433 and 0.319, respectively)

Figure 3: Viral load at 6 and 12 months after start of continuous

Conclusions

- Across children initiating abacavir in early life in Europe, it was safe and well tolerated, and discontinuations for safety concerns were rare.
- Viral suppression was below the UN-AIDS 90% target which may reflect challenges of treatment in infancy.